Using Nanoinformatics to Predict Optimal Nano-formulations from Drug Structure

Yosi Shamay, PhD

Biomedical Engineering Technion, Israel Institute of Technology

What is Machine Learning?

Is it Artificial Intelligence (AI)?

What is Machine Learning?

Basic Definition:

A method of **automated data analysis** which enables a computer program to 'learn' from data, improve models and then make a **prediction** about something in the world.

My Proposal for Machine Learning in Nanomedicine: Formulation Assistant

Modified from : Shamay et al Nature Materials 2018

Drug Nanocrystals

Features and Advantages

- 1) Hydrophobic drugs (eg Kl's)
- 2) Can work with multiple drugs
- 3) High drug loading efficiency(>80%)
- 4) Rapid, scalable synthesis

Weakness

- 1) Unpredictable stability
- 2) Only good for some drugs
- 3) Lack of tissue specificity

Which Molecule Is The Best Stabilizer For Nanocrystals ?

Selection criteria:

Excipient needs to stabilize a hydrophobic drug (water sol<1ug/ml) at 2mg/ml in water with a 1:10 ratio=> **90% loading efficiency**

Tested 9 drugs with 20 amphophilic molecules

VEM=Vemurafinib, 2.SOR=Sorafenib,
NIL=Nilotinib, 4.PAC=Paclitaxel,
PAC=Paclitaxel, 6.ZST=ZSTK474,
LAP=Lapatinib, 8.SUN=Sunitinib,
ERL=Erlotinib, 10.TRA=Trametinib.

Drugs and Stabilizer Screen

IR783 Co-Assemble with a Hydrophobic Drug

Only Certain Drugs Self-Assemble with IR783

Shamay et al . Nature Materials 2018

Indocyanine Nanoparticle (INP) Characterization

Can we predict which drugs will form stable nanoparticle?

Quantitative structure-activity relationship (QSAR)

Drug Structure

Nanoparticle Properties/Activity

QSAR: Correlation of Descriptors with Self-Assembly

Don't form

Training Set		
molecule	Rank	
Idelalisib	0	
Camptothecin	0	
Sunitinib	0	
Erlotinib	0	
Taselisib	0	
Silvesterol	0	
Lapatinib	0	
MEK162	0	
ABT 199	1	
Rapamycin	1	
Docetaxel	1	
Trametinib	1	
Sorafenib	1	
Enzalutamide	1	
BYL719	1	
Fulvestrant	1	

nanoparticles Calculation of 5000 molecular descriptors

> Correlation of descriptor scores with training set

nanoparticles

Form

Descriptor	Correlation
SpMax5_Bh(s)	0.9881
SpMax4_Bh(s)	0.9444
SM2_B(s)	0.8819
ATS2s	0.8778
HyWi_B(s)	0.8769
HTs	0.8761
SM3_B(s)	0.8669
Eig03_AEA(dm)	0.8444
H4s	0.8378
ZM1Kup	0.8334
SM03_EA(dm)	0.8304
ATSC2e	0.8279
RTs	0.8272
SM4_B(s)	0.8209

SpMAX Bh(s): Leading eigenvalue of the **Burden matrix** weighted by the **I-state**

What is the Burden Matrix?

Burden matrices **B(w)** are augmented adjacency matrices derived from a molecular graph defined to account for heteroatoms and bond multiplicity

What is the Intrinsic State?

$$\mathbf{I}_{i} = \frac{\left(2 / \mathbf{L}_{i}\right)^{2} \cdot \delta_{i}^{v} + 1}{\delta_{i}}$$

L : principal quantum number δ^{ν} : number of valence electrons δ : number of sigma electrons

Kier et al. Journal	of Chemical	Information.	1995
---------------------	-------------	--------------	------

Group	Intrinsic state
-F	8.0
=0	7.0
-ОН	6.0 6.0
≡N	6.0
=N	5.0
-Cl	4.1
=S	3.7
-0-	3.5
-SH	3.2
=CH2	3.0
=N-	3.0
-Br	2.8
=C=	2.5
-1	2.1
>N-	2.0
-S-	1.8
>C=	1.7
>CH2	1.5
>CH-	1.3
>C<	1.3

Validation of Predictions

Quantitative Structure-Nanoparticle Assembly Prediction (QSNAP)

Decision Tree Summarizes QSNAP information applied to 6400 drugs:

From 6400 drugs there are 292 FDA approved drugs should form good INP with ~98% confidence

This process could potentially save time and money for formulation processes

Sorafenib INPs Show Superior Anti Tumor Efficacy

Shamay et al Nature Materials 2018

Conclusions

- IR dyes are new stabilizers for drug nanocrystals
- QSNAP is a predictive model for matching a drug to a unique nano-formulation
- High intrinsic state groups (=O and F) are required for self assembly.
- The stabilized nanoparticles are have therapeutic benefits without further polymer coating.

Please spread the word..

Is Looking for Students: yshamay@technion.ac.il

Thank you 😊